榜单搜索

1+1=2

1+1=2是最基础、最原始的数学,也是现代数学的根基,更是无数人的数学教育启蒙。没有1+1=2,整个庞大的数学体系就无法建立。1+1=2的伟大之处不仅仅在这里,还在于它论述了宇宙的基本特性,并传达了标志性的信息。英国科学期刊《物理世界》曾展开了一场伟大公式的评选活动,1+1=2高居第一位。
目录
1+1=2介绍

1 1=2(one plus one equals two),是初等数学范围内的数值计算等式。

数的出现

早在蒙昧时代,人们就在对猎物的储藏与分配等活动中,逐渐产生了数的感觉。当一个原始人面对放在一起的3只羊、3个苹果或3支箭时,他会朦胧地意识到其中有一种共性。可以想象,他此时会是多么地惊讶。但是,从这种原始的感觉到抽象的“数”的概念的形成,却经过了极其漫长的时间。

一般认为,自然数的概念的形成可能与火的使用一样古老,至少有着30万年的历史。我们无法考证,人类究竟在什么时候发明了加法,因为那时没有足够详细的文献记录(也许文字也刚刚诞生)。但加法的出现无疑是为了在交换商品或战俘时进行运算。至于乘法和除法,则必定是在加减法的基础上搞出来的。而分数应该是出于分割物体的需要。

应该说,当某个原始人第一个意识到1 1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1 1=2是完全成立的。

第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。

世界上还有一些事物,他们是彻底拒绝可加性的,比如生命世界里的神经元。我们可以将容器里的分子分到两个容器,使得每个容器里的气体仍然保持有宏观量——温度、压强等。但是,我们对神经元不能这样做。我们每个人都会产生幸福、痛苦之类的感觉。生物学告诉我们,这些感觉是由神经元产生的。但是,我们却不能说,某个神经元会产生多少幸福或痛苦。不仅每个神经元并不具备这种性质,而且我们也不能将大脑劈成两半,使得每个半球都有幸福或者痛苦感。神经元不是分子——分子可以随时分开或者重组,神经元具有协调性,一旦将他们分开,生命就会终结,不可能再组合。

哥德巴赫猜想

数学上,还有另一个非常有名的“(1 1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。例如3 3=6;11 13=24。他试图证明自己的发现,却屡战屡败。1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1 1)]的猜想,就被称为“哥德巴赫猜想”,成为数学皇冠上一颗可望不可即的“明珠”。

1956年底,已先后写了四十多篇论文的数学家陈景润调到科学院,开始在华罗庚教授指导下专心研究数论。1966年5月,他像一颗璀璨的明星升上了数学的天空,宣布他已经证明了(1 2),即“充分大的偶数都能表示为一个素数及一个不超过二个素数的积之和”。

1973年,关于(1 2)的简化证明发表了,他的论文轰动了全世界数学界。他的成果被国际公认为“陈景润定理”,也叫“陈氏定理”。

陈景润(1933.5-1996.3)是中国现代数学家。1933年5月22日生于福建省福州市。1953年毕业于厦门大学数学系。由于他对塔里问题的一个结果作了改进,受到华罗庚的重视,被调到中国科学院数学研究所工作,先任实习研究员、助理研究员,再越级提升为研究员,并当选为中国科学院数学物理学部委员。

1996年3月19日13时10分,因肺炎并发症逝世,享年62岁。

皮亚诺公理

皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

皮亚诺的这五条公理用非形式化的方法叙述如下:

①0是自然数;

②每一个确定的自然数a,都有一个确定的后继数x',x'也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);

③如果b、c都是自然数a的后继数,那么b=c;

④0不是任何自然数的后继数;

⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。

(这条公理也叫归纳公理,保证了数学归纳法的正确性)

更正式的定义如下:一个戴德金-皮亚诺结构是这样的一个三元组(X,x,f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:

x不在f的值域内;

f为一个单射;

若x∈A且"a∈A蕴涵f(a)∈A",则A=X。

该结构所引出的关于自然数集合的基本假设:

1.N(自然数集)不是空集;

2.N到N内存在a→a'的一一映射;

3.后继元素映射的像的集合是N的真子集,事实上即N{1}(或N{0});

4.若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。

1 1的证明:

∵1 1的后继数是1的后继数的后继数,即3,

∴2的后继数是3。

根据皮亚诺公理③,可得:1 1=2。

伟大公式

2004年10月,一条科学新闻在国内的媒体上不胫而走。

原来,英国著名的科学杂志《物理世界》此前举行了一场别开生面的评选活动,邀请世界各地的读者选出自己心目中最伟大、最喜爱的公式、定理或定律。结果,让很多人意外的是,1 1=2这个连小学生都知道的基本数学公式不仅入选,而且还高居第一。一个加拿大读者说出了他的理由:“这个最简单的公式有着一种妙不可言的美感。”此次评选活动的主持者则这样评价到:“一个伟大公式的力量不仅论述了宇宙的基本特性并传达了标志性的信息,而且还在尽力孕育出更多自然界。

无独有偶,1971年,尼加拉瓜发行了一套纪念邮票《改变世界面貌的十个数学公式》,排在第一。

然而正是这个“1 1=2”。

从无穷小量和运算符号括号"()"来证明1 1=2.证明如下:

假设0(这里的0为无穷小量)0=1,

那么(0 0)(0 0)=1 1,

符合加法运算定律(合并同类项和结合律),

则有1 1=2。

三段式证明如此。

1+1=2相关榜单
影响世界的十大公式 最伟大的公式排名 世界著名公式大全
世界上最伟大的十大公式名单如下:薛定谔方程、勾股定理、1 1=2、傅立叶变换、欧拉公式、质能方程、麦克斯韦方程组、牛顿第二定律、德布罗意方程组、圆的周长,下面请看榜单详细内容。
更多榜中榜推荐
高中数学十大必背公式 高中重点数学公式大全 高中数学公式汇总
十大高中必背数学公式名单如下:三角函数、初等函数、集合、数列、三角恒等变换、因式分解、解三角形、立体几何、抛物线(数学知识)、不等式,下面请看榜单详细内容。
初中数学十大必背公式 初中数学公式大全 初一到初三数学公式归纳
十大初中必背数学公式名单如下:方差和标准差、勾股定理、分式、一元二次方程、二次函数、三角函数、幂运算、一元一次方程、圆幂定理、绝对值,下面请看榜单详细内容。
高中物理十大必背公式 高考物理常用公式 高中物理公式大全
十大高中必背物理公式名单如下:动力学、匀变速直线运动、加速度、热学、电场、力学、电磁感应、磁场、振动和波、交流电,下面请看榜单详细内容。
初中物理十大必背公式 中考物理常用公式 初中物理公式大全
十大初中必背物理公式名单如下:速度公式、密度、欧姆定律、压强、浮力、重力、功、功率、滑轮公式、比热容,下面请看榜单详细内容。
影响世界的十大公式 最伟大的公式排名 世界著名公式大全
世界上最伟大的十大公式名单如下:薛定谔方程、勾股定理、1 1=2、傅立叶变换、欧拉公式、质能方程、麦克斯韦方程组、牛顿第二定律、德布罗意方程组、圆的周长,下面请看榜单详细内容。
相关分类
  • 公式
  • 物理公式
  • 数学公式
  • 美词美句
  • 趣味成语
  • 网络流行语
  • 故事
  • 方言
  • 汉字
  • 悖论
  • 效应
  • 化学公式
  • 表情包
  • 公式算术
  • 演讲
  • 物理定律
  • 化学沉淀物
  • 化学反应
  • 热门文章
  • 十大高中必背数学公式
  • 十大高中必背物理公式
  • 世界上最伟大的十大公式
  • 十大初中必背物理公式
  • 十大初中必背数学公式
  • 高中必背10个化学方程式
  • 初中必背10个化学方程式
  • 人气最高的十大动漫美女
  • 北京十大帅哥明星
  • 甘肃十大帅哥明星
  • 热门词条
  • 1
    滑轮公式
  • 2
    氯化氢和氧气反应
  • 3
    方差和标准差
  • 4
    力学
  • 5
    加速度
  • 6
    电场
  • 7
    比热容
  • 8
    集合
  • 9
    二次函数
  • 10
    电磁感应
  • 11
    碳酸钠和氯化钙反应
  • 12
    初等函数
  • 13
    压强
  • 14
    抛物线(数学知识)
  • 15
    绝对值
  • 16
    1+1=2
  • 17
    因式分解
  • 18
    三角恒等变换
  • 19
    一元二次方程
  • 20
    不等式